First time here? Checkout the FAQ!
x
0 votes
534 views
asked in Python by (120 points)  

from keras.models import Sequential 
from keras.layers import Dense 
from keras.layers import LSTM 
from sklearn.model_selection import train_test_split

model = Sequential() 
model.add(LSTM( 10, input_shape=(1, 1))) 
model.add(Dense(1, activation="linear")) 
model.compile(loss="mse", optimizer="adam")

X, y = get_data()

X_train, X_test, y_train, y_test = train_test_split(x, y, test_size=0.2, random_state=1)
X_train_2, X_val, y_train_2, y_val = train_test_split(X_train, y_train, test_size=0.25, random_state=1)

model.fit(X_train, y_train, epochs=800, validation_data=(X_val, y_val), shuffle=False)

  

Please log in or register to answer this question.

...