First time here? Checkout the FAQ!
x
0 votes
1.8k views
asked in Artificial Intelligence by (116k points)  
edited by

Assume the function is defined as $f(x,y)=x^2+y^2-4xy$, and $1\leq x \leq 4,1\leq y \leq 4$.  The Genetic Algorithm is selected to maximize the function. If the first population for pairs of $(x,y)$ is defined as $S=\{A=(1,2), B=(2,1), C=(2,2), D=(2,3), E=(3,1) \}$.  

a) Calculate the fitness of each of individuals (A,B,C,D,E) in population if:   $\text{fitness function}=f(x,y)$  
b) Calculate the probability of each individual and sort them in descending order. Which individual has the maximum fitness (probability)? $p_{i}=\frac{f_{i}}{\sum_{j=1}^{N} f_{j}}$
c) Draw the roulette wheel and calculate the boundaries for each individual
d) If we use two individuals and their arithmetic mean for crossover each time, and for mutation, we add 0.1 to x and subtract 0.1 from y for each individual created after crossover, what will be the next population with five members?
For part (d), use the following random numbers in order whenever you need them in the selection process:
$\text{random numbers} =  \{0.780,0.220,0.776,0.507,0.822,0.765,0.288,0.881,0.895,0.421\}$
 

  

1 Answer

0 votes
answered by (116k points)  
 
Best answer

The solution for the problem is as follows:

...