First time here? Checkout the FAQ!
x
+3 votes
5.7k views
asked in Machine Learning by (115k points)  
reshown by

The scatter plot of Iris Dataset is shown in the figure below. Assume Softmax Regression is used to classify Iris to Setosa, Versicolor, or Viriginica using just petal length and petal width. If  weights required for Softmax Regression initialized to 1 for class Setosa, 2 for class Versicolor, and 3 for Virginica,

1) What will be the probability of an iris with petal length = 4.6  and petal width = 1.7 to be classified as Virginica? 

2) What will be the probability of Virginica, if we use all features petal length = 4.6  and petal width = 1.7, sepal length = 5.5 and sepal width = 3.0 with the same weight initialization?

 

  

2 Answers

+1 vote
answered by (115k points)  
 
Best answer

Please check the following answer:

0 votes
answered by (140 points)  
Class 1: Setosa

Class 2: Versicolor

Class 3: Virginica

The initialized weights:

$w_{01} = w_{11}=w_{21} = 1$

$w_{02} = w_{12}=w_{22} = 2$

$w_{03} = w_{13}=w_{23} = 3$

The weight equations:

$z_1 = x_0w_{01} + x_1 w_{11} + x_2w_{21}$

$z_2 = x_0w_{02} + x_1 w_{12} + x_2w_{22}$

$z_1 = x_0w_{03} + x_1 w_{13} + x_2w_{23}$

1) $x_0 = 1 \quad x_1 = 4.6 \quad \text{and} \quad x_2 = 1.7$

$z_1 = w_{01} + x_1 w_{11} + x_2w_{21} = 1 + 4.6 + 1.7 = 7.3$

$z_2 = w_{02} + x_1 w_{12} + x_2w_{22} = 2 + 4.6(2) + 1.7(2) = 16.3$

$z_3 = w_{03} + x_1 w_{13} + x_2w_{23} = 3 + 4.6(3) + 1.7(3) = 21.9$

$e^{z_1} + e^{z_2} + e^{z_3} = e^{7.3} + e^{16.3} + e^{21.9} = 1480.3 + 11994994 + 3243763284 = 3255759758$

$p^3 = \frac{e^{z_3}}{\sum_{i=1}^3 e^{z_i}} = \frac{3243763284}{3255759758} = 0.996315307$

$\therefore$ probability to classify to virginica is 99.6%

2) $x_0 = 1 \quad x_1 = 4.6 \quad  x_2 = 1.7 \quad x_3 = 5.5 \quad x_4 = 3$
$\begin{align*} z_1 &= x_0 + w_{11}x_1 + w_{21}x_2 + w_{31}x_3 + w_{41}x_4 \\ &= 1 + 4.6 + 1.7+5.5+3\\ &=15.8\end{align*}$

$\begin{align*} z_2 &= x_0 + w_{12}x_1 + w_{22}x_2 + w_{32}x_3 + w_{42}x_4 \\ &= 2 + (2)4.6 + (2)1.7+(2)5.5+(2)3\\ &=31.6 \end{align*}$

$\begin{align*} z_3 &= x_0 + w_{13}x_1 + w_{23}x_2 + w_{33}x_3 + w_{43}x_4 \\ &= 3 + (3)4.6 + (3)1.7+(3)5.5+(3)3\\ &=47.4 \end{align*}$

$\begin{align*}\sum_{i=1}^3 e^{z_i}&=e^{z_1} + e^{z_2} + e^{z_3}\\ &= e^{15.8} + e^{31.6} + e^{47.4} \\&= 7275332 + 5.29e13 + 3.85e20 \\&= 3.850866845e20\end{align*}$

$p^3 = \frac{e^{z_3}}{\sum_{i=1}^3 e^{z_i}} = \frac{3.850866316e20}{3.850866845e20} = 0.999999863$

$\therefore$ probability to classify to virginica is 99.9%
...